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Summary 

Without a coordinated state or federal response to COVID-19 across the United States, 
counties are left to weigh the potentially large yet unseen threat of COVID-19 with the 
economic and societal costs of enacting strict social distancing measures. The 
immediate and long-term risk of the virus can be difficult to grasp, given the lack of 
historical precedent and that many cases go undetected. We calculated the risk that 
there already is sustained community transmission that has not yet been detected. 
Given the low testing rates throughout the country, we assume that one in ten cases are 
tested and reported. If a county has detected only one case of COVID-19, there is a 51% 
chance that there is already a growing outbreak underway. COVID-19 is likely spreading 
in 72% of all counties in the US, containing 94% of the national population. Proactive 
social distancing, even before two cases are confirmed, is prudent. 

Details 

The unprecedented threat of COVID-19 could kill hundreds of thousands to millions of 
Americans ​(1,2)​. Over the course of a few weeks, it has emerged in all 50 states ​(3)​. The 
federal government has not issued guidance for aggressive ​preventative​ interventions, 
even before cases rise. State and local officials are struggling to weigh the potentially 
enormous economic and societal costs of strict social distancing measures against the 
unseen ​risks of substantial COVID-19 hospitalizations and mortality in their 
communities. 

COVID-19 is largely spreading undetected, because of the high proportion of 
asymptomatic and mild infections and limited laboratory testing capacity ​(4,5)​. Public 
health officials are making grave decisions amidst overwhelming uncertainty, and are 
often waiting for compelling evidence of local transmission prior to issuing social 
distancing orders. To inform decision-makers, we have estimated the likelihood that 
each county in the US already has extensive community transmission based on the 
number of confirmed cases to date.  
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Our approach is based on a tool that we developed to estimate the risk of another ​silent 
spreader​--Zika--which threatened to emerge in southern states during the 2016 outbreak 
(6)​. These estimates account for under-reporting, the uncertainty in the transmission 
rate of COVID-19, and the possibility of super-spreading events, as observed for SARS in 
some recent COVID-19 outbreaks ​(6,7)​. We also assume that contact rates in the US 
have been reduced 50% ​(8,9)​ and thus the reproduction number (​R​0​) has been reduced 
from 3 to 1.5. (The estimated risks would be even higher for larger reproduction 
numbers - Figure S1.) We assume that every county has had at least one undetected 
case and run stochastic simulations to estimate the true underlying state of the 
outbreak depending on the number of confirmed cases to date.  

For counties that have not yet reported a confirmed case, the chance that there is an 
undetected outbreak underway is 9%. A single detected case of COVID-19 increases 
that risk to 51%. Overall, 72% of US counties with 94% of the national population have 
over a 50% chance of ongoing COVID-19 transmission (Figure 1). In Texas specifically, 
56% of the counties accounting for 97% of the population have over a 50% chance of 
ongoing COVID-19 transmission (Figure 2). 

Although not entirely surprising, these risk estimates provide evidence for policymakers 
who are still weighing if, when, and how aggressively to enact social distancing 
measures. It is likely that our entire map will be bright red within a week or two, given 
that COVID-19 spreads very quickly and often silently ​(4,10)​. The fate of outbreaks in 
counties across the US very much hinges on the speed of local interventions. Early and 
extensive social distancing can block community transmission, avert rises in 
hospitalizations that overwhelm local capacity, and save lives ​(11,12)​. This map 
advocates for the immediate implementation of such measures throughout the US.  
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Figure 1​: Probability of ongoing COVID-19 outbreaks for the 3142 counties in the United 
States. The chance of an unseen outbreak in a county without any reported cases is 9%. 
A single reported case suggests that community transmission is likely. 

 

Figure 2​: Probability of ongoing COVID-19 outbreaks for the 254 counties in the United 
States. The chance of an unseen outbreak in a county without any reported cases is 9%. 
A single reported case suggests that community transmission is likely. 

 



Supplemental information 

County data  

We obtained county-level estimates for COVID-19 cases from a data repository curated 
by the New York Times ​(13)​. 

Model  

We adapted the framework in ​(6)​ to model COVID-19 in US counties. It assumes a 
branching process model for early transmission in which the number of secondary 
infections per infected case is distributed according to a negative binomial distribution 
to capture occasional superspreading events, as estimated for SARS ​(7)​. We account 
for imperfect detection and COVID-19 specific epidemiological characteristics (details 
in Table S1).  

For each county, we run 10,000 stochastic outbreaks beginning with a single undetected 
case and ending when the cumulative cases reach 500 or the outbreak dies out 
(whichever comes first). Following ​(6)​, outbreaks that reach 500 cases and reach a 
minimum prevalence of ten cases in a given day are classified as epidemics. We 
calculate the probability of sustained community transmission for a given number of 
detected cases, ​x​, by looking at all outbreaks that had ​x​ detected cases, and calculating 
the proportion of those outbreaks that progressed to epidemics. Future iterations of the 
model could improve estimates by modeling imported cases between counties, though 
this addition would only raise the estimated risk across all counties. 

Sensitivity Analysis 

Our baseline assumes that the reproduction number (​R​0​) of COVID-19 is 1.5 (accounting 
for ongoing social distancing measures across the US) and that 10% of all cases are 
reported. To assess the impact of these assumptions on our estimates, we conducted a 
sensitivity analysis that varied ​R​0​ (1.1 and 3) and across a range of reporting rates 
(5%-40%). Generally, higher transmission rates and lower reporting rates increase the 
estimated local risk of sustained transmission, while lower transmission rates and 
higher reporting rates reduce the estimates (Figure S1).  
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Table S1: Model parameters used for simulating county COVID-19 outbreaks 

Parameter  Description  Estimate  Source 

Re  
Effective reproduction number: Average number 

of new cases from one infected individual in a 
susceptible population 

1.5  (14) 

TG  

Generation time (days): Average length of time 
between consecutive exposures 

 

6  (15,16) 

T E   Latent period (days)  1.25  Fit to TG  

T I   Infectious period (days)  9.5  (15) 

  Number of exposed compartments in boxcar 
implementation  1  Fit to TG  

  Number of infectious compartments in boxcar 
implementation  7  (15) 

  Incubation rate: Daily probability of progressing 
from one exposed compartment to the next  0.80  Fit to TG  

  Recovery rate: Daily probability of progressing 
from one infectious compartment to the next  0.73  Fit to T I  

 

Daily reporting rate: The daily probability of an 
infectious individual being reported 

  

0.01  (17) 

  Total dispersion parameter of negative binomial 
distribution  0.16  (7) 

 

R code for number of new infectious individuals 
drawn daily:  
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Figure S1​: Sensitivity analysis with respect to the reproduction number (​R​0​) and case 
detection probability. Percentage of US counties (left) or US population (right) that have 
greater than a 50% risk for sustained local transmission across varying assumed 
transmission rates (colors) and case detection probabilities (x-axis).  
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